144 The Grids
Date: 04/08/04

The 10x36 (360) Grid

A Comparison of Fibonacci Numbers and Primes in a Table Format.
A Comparison of Fibonacci Numbers and Primes in a Table Format.

FIBONACCI SERIES

The fibonacci series is in Bold: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368 (24th)

From Fibonacci 233 to 46368, there is such a spread of numbers that only the vertical column and horizontal row positions are certain. Any diagonal 45 degree relationships cannot be estimated, as is.

PRIMES

The Primes: 1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89 (24th)

The Table has a 1-46368 linear sequence with a gap removed, between 160 and 230, that have no primes and no fibonacci numbers. Each Table then jumps to include fibonacci 233, then jumps again around 360 to include every fibonacci number to 46368 (24th). The number down the left side is the reference number (1, 11, 21, 31, etc.) in base 10.
The 1-10 is repeated upon a 10x36 grid with no extra 5th.

Notice that there is a certain arrangement of the primes denoted as /P/ or \P\, depending upon whether the prime lines up at a 45 degree angle to the left, right or seems to be a center |P|. Some unique characteristics about this Table is that 3 prime has a linear relationship with 47 prime. 29 prime has a linear relationship with 47 prime and 83 prime. 7 prime has a linear relationship with 29 prime.

 1 2|P| 3\P\ 4|P| 5/P/ 6 7\P\ 8 9 10 11|P| 12 13|P| 14 15 16 17|P| 18 19|P| 20 21 22 23|P| 24 25 26 27 28 29/P/ 30 31|P| 32 33 34 35 36 37|P| 38 39 40 41|P| 42 43|P| 44 45 46 47/P/ 48 49 50 51 52 53|P| 54 55 56 57 58 59|P| 60 61|P| 62 63 64 65 66 67|P| 68 69 70 71|P| 72 73|P| 74 75 76 77 78 79|P| 80 81 82 83/P/ 84 85 86 87 88 89|P| 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131|P| 132 133 134 135 136 137|P| 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 ... ... ... ... ... ... ... ... ... ... 231 232 233 234 235 236 237 238 239 240 351 352 353 354 355 356 357 358 359|P| 360 371 ... ... ... ... ... 377 ... ... ... 601 ... ... ... ... ... ... ... ... 610 981 ... ... ... ... ... 987 ... ... ... 1591 ... ... ... ... ... 1597|P| ... ... ... 2581 ... ... 2584 ... ... ... ... ... ... 4181 ... ... ... ... ... ... ... ... ... 6761 ... ... ... 6765 ... ... ... ... ... 10941 ... ... ... ... 10946 ... ... ... ... 17711 ... ... ... ... ... ... ... ... ... 28651 ... ... ... ... ... 28657|P| ... ... ... 46361 ... ... ... ... ... ... 46368 ... ...

The 11x33 (363) Grid

A Comparison of Fibonacci Numbers and Primes in a Table Format.
A Comparison of Fibonacci Numbers and Primes in a Table Format.

FIBONACCI SERIES

The fibonacci series is in Bold: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368 (24th)

From Fibonacci 233 to 46368, there is such a spread of numbers that only the vertical column and horizontal row positions are certain. Any diagonal 45 degree relationships cannot be estimated, as is.

PRIMES

The Primes: 1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89 (24th)

The Table has a 1-46368 linear sequence with a gap removed, between 154 and 232, that have no primes and no fibonacci numbers. Each Table then jumps to include fibonacci 233, then jumps again around 360 to include every fibonacci number to 46368 (24th). The number down the left side is the reference number (1, 12, 23, 34, etc.) in base 11.
The 1-11 is repeated upon a 11x33 grid with no extra 5th.

Notice that there is a certain arrangement of the primes denoted as /P/ or \P\, depending upon whether the prime lines up at a 45 degree angle to the left, right or seems to be a center |P|. Some unique characteristics about this Table is that 3 prime has a linear relationship with 13 prime and 23 prime. 5 prime has a linear relationship with 17 prime and 29 prime. 7 prime has a linear relationship with 43 prime.

 1 2|P| 3/P/ 4|P| 5\P\ 6 7\P\ 8 9 10 11/P/ 12 13/P/ 14 15 16 17\P\ 18 19|P| 20 21 22 23/P/ 24 25 26 27 28 29\P\ 30 31|P| 32 33 34 35 36 37|P| 38 39 40 41|P| 42 43\P\ 44 45 46 47/P/ 48 49 50 51 52 53|P| 54 55 56 57 58 59|P| 60 61|P| 62 63 64 65 66 67|P| 68 69 70 71|P| 72 73|P| 74 75 76 77 78 79|P| 80 81 82 83|P| 84 85 86 87 88 89|P| 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131|P| 132 133 134 135 136 137|P| 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 ... ... ... ... ... ... ... ... ... ... ... 232 233 234 235 236 237 238 239 240 241 242 353 354 355 356 357 358 359|P| 360 361 362 363 375 ... 377 ... ... ... ... ... ... ... ... 602 ... ... ... ... ... ... ... ... 610 ... 987 ... ... ... ... ... ... ... ... ... ... 1591 ... ... ... ... ... 1597|P| ... ... ... ... 2581 ... ... 2584 ... ... ... ... ... ... ... 4181 ... ... ... ... ... ... ... ... ... ... 6761 ... ... ... 6765 ... ... ... ... ... ... 10941 ... ... ... ... 10946 ... ... ... ... ... 17711 ... ... ... ... ... ... ... ... ... ... 28651 ... ... ... ... ... 28657|P| ... ... ... ... 46361 ... ... ... ... ... ... 46368 ... ... ...

The 12x30 (360) Grid

A Comparison of Fibonacci Numbers and Primes in a Table Format.
A Comparison of Fibonacci Numbers and Primes in a Table Format.

FIBONACCI SERIES

The fibonacci series is in Bold: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233 (12th)

PRIMES

The Primes: 1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89 (24th)

The Table has a 1-360 linear sequence.
The 1-15 is repeated upon a 12x30 grid with no extra 5th.

Notice that there is a certain arrangement of the primes denoted as /P/ or \P\, depending upon whether the prime lines up at a 45 degree angle to the left, right or seems to be a center |P|. Some unique characteristics about this Table is that 4 prime has a linear relationship with 17 prime and 43 prime. 5 prime has a linear relationship with 83 prime.

 1 2|P| 3|P| 4\P\ 5\P\ 6 7|P| 8 9 10 11/P/ 12 13|P| 14 15 16 17\P\ 18 19|P| 20 21 22 23|P| 24 25 26 27 28 29|P| 30 31|P| 32 33 34 35 36 37|P| 38 39 40 41|P| 42 43\P\ 44 45 46 47|P| 48 49 50 51 52 53|P| 54 55 56 57 58 59|P| 60 61|P| 62 63 64 65 66 67|P| 68 69 70 71|P| 72 73|P| 74 75 76 77 78 79|P| 80 81 82 83\P\ 84 85 86 87 88 89|P| 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131|P| 132 133 134 135 136 137|P| 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 ... ... ... ... ... ... ... ... ... ... ... ... 229 230 231 232 233 234 235 236 237 238 239 240 349 350 351 352 353 354 355 356 357 358 359|P| 360

The 13x28 (364) Grid

A Comparison of Fibonacci Numbers and Primes in a Table Format.
A Comparison of Fibonacci Numbers and Primes in a Table Format.

FIBONACCI SERIES

The fibonacci series is in Bold: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233 (12th)

PRIMES

The Primes: 1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89 (24th)

The Table has a 1-364 linear sequence.
The 1-13 is repeated upon a 13x28 grid with no extra 5th.

Notice that there is a certain arrangement of the primes denoted as /P/ or \P\, depending upon whether the prime lines up at a 45 degree angle to the left, right or seems to be a center |P|. Some unique characteristics about this Table is that 5 prime has a linear relationship, left, with 17 prime and 29 prime and also with 47 prime, right. 7 prime has a linear relationship with 43 prime. 11 prime has a linear relationship with 23 prime, 47 prime and 83 prime.

 1 2|P| 3|P| 4|P| 5/\P\/ 6 7/P/ 8 9 10 11/P/ 12 13|P| 14 15 16 17/P/ 18 19|P| 20 21 22 23/P/ 24 25 26 27 28 29/P/ 30 31|P| 32 33 34 35 36 37|P| 38 39 40 41|P| 42 43/P/ 44 45 46 47/\P/\ 48 49 50 51 52 53|P| 54 55 56 57 58 59|P| 60 61|P| 62 63 64 65 66 67|P| 68 69 70 71|P| 72 73|P| 74 75 76 77 78 79|P| 80 81 82 83/P/ 84 85 86 87 88 89|P| 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131|P| 132 133 134 135 136 137/P/ 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359|P| 360 361 362 363 364

The 14x26 (364) Grid

A Comparison of Fibonacci Numbers and Primes in a Table Format.
A Comparison of Fibonacci Numbers and Primes in a Table Format.

FIBONACCI SERIES

The fibonacci series is in Bold: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233 (12th)

PRIMES

The Primes: 1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89 (24th)

The Table has a 1-364 linear sequence.
The 1-14 is repeated upon a 14x26 grid with no extra 5th.

Notice that there is a certain arrangement of the primes denoted as /P/ or \P\, depending upon whether the prime lines up at a 45 degree angle to the left, right or seems to be a center |P|, including a prime that goes left and right \/P\/. Some unique characteristics about this Table is that the center primes begin at 5 prime, 7 prime, 11 prime and 13 prime.

 1 2|P| 3/P/ 4/P/ 5|P| 6 7|P| 8 9 10 11|P| 12 13|P| 14 15 16 17\/P/\ 18 19|P| 20 21 22 23|P| 24 25 26 27 28 29/P/ 30 31|P| 32 33 34 35 36 37|P| 38 39 40 41|P| 42 43/P/ 44 45 46 47|P| 48 49 50 51 52 53|P| 54 55 56 57 58 59|P| 60 61|P| 62 63 64 65 66 67|P| 68 69 70 71|P| 72 73|P| 74 75 76 77 78 79|P| 80 81 82 83|P| 84 85 86 87 88 89|P| 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131|P| 132 133 134 135 136 137\P\ 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359|P| 360 361 362 363 364

The 15x24 (360) Grid

A Comparison of Fibonacci Numbers and Primes in a Table Format.
A Comparison of Fibonacci Numbers and Primes in a Table Format.

FIBONACCI SERIES

The fibonacci series is in Bold: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233 (12th)

PRIMES

The Primes: 1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89 (24th)

The Table has a 1-360 linear sequence.
The 1-15 is repeated upon a 15x24 grid with no extra 5th.

Notice that there is a certain arrangement of the primes denoted as /P/ or \P\, depending upon whether the prime lines up at a 45 degree angle to the left, right or seems to be a center |P|. Some unique characteristics about this Table is that the center prime is at 4 and 13 and the left and right 45 degree angles begin at 3 prime, 5 prime, 7 prime and 11 prime.

 1 2|P| 3\P\ 4|P| 5/P/ 6 7\P\ 8 9 10 11/P/ 12 13|P| 14 15 16 17/P/ 18 19|P| 20 21 22 23\P\ 24 25 26 27 28 29|P| 30 31|P| 32 33 34 35 36 37|P| 38 39 40 41|P| 42 43|P| 44 45 46 47/P/ 48 49 50 51 52 53|P| 54 55 56 57 58 59|P| 60 61|P| 62 63 64 65 66 67|P| 68 69 70 71|P| 72 73|P| 74 75 76 77 78 79|P| 80 81 82 83/P/ 84 85 86 87 88 89|P| 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131|P| 132 133 134 135 136 137/P/ 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359|P| 360

The 16x23 (368) Grid

A Comparison of Fibonacci Numbers and Primes in a Table Format.
A Comparison of Fibonacci Numbers and Primes in a Table Format.

FIBONACCI SERIES

The fibonacci series is in Bold: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233 (12th)

PRIMES

The Primes: 1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89 (24th)

The Table has a 1-368 linear sequence.
The 1-16 is repeated upon a 16x23, reaching 16 per row.

Notice that there is a certain arrangement of the primes denoted as /P/ or \P\, depending upon whether the prime lines up at a 45 degree angle to the left, right or seems to be a center |P|. Some unique characteristics about this Table is that 4 prime has a linear relationship with fibonacci 21, 55 and 89. 11 prime has a linear relationship with 131 prime. 13 prime has a linear relationship, left, with 43 prime and with 47 prime, right. 47 prime has a linear relationship with 137 prime.

 1 2|P| 3|P| 4\P\ 5|P| 6 7|P| 8 9 10 11/P/ 12 13\/P\/ 14 15 16 17|P| 18 19|P| 20 21 22 23|P| 24 25 26 27 28 29|P| 30 31|P| 32 33 34 35 36 37|P| 38 39 40 41|P| 42 43|P| 44 45 46 47\/P\/ 48 49 50 51 52 53|P| 54 55 56 57 58 59|P| 60 61|P| 62 63 64 65 66 67|P| 68 69 70 71|P| 72 73|P| 74 75 76 77 78 79|P| 80 81 82 83|P| 84 85 86 87 88 89|P| 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131/P/ 132 133 134 135 136 137|/P|/ 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359|P| 360 361 362 363 364 3656 366 367 368|P|

The 17x21 (374) Grid

A Comparison of Fibonacci Numbers and Primes in a Table Format.
A Comparison of Fibonacci Numbers and Primes in a Table Format.

FIBONACCI SERIES

The fibonacci series is in Bold: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233 (12th)

PRIMES

The Primes: 1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89 (24th)

The Table has a 1-374 linear sequence.
The 1-17 is repeated upon a 17x22 grid with no extra 5th.

Notice that there is a certain arrangement of the primes denoted as /P/ or \P\, depending upon whether the prime lines up at a 45 degree angle to the left, right or seems to be a center |P|. Some unique characteristics about this Table is that 5 prime has a linear relationship with 23 prime and 131 prime. 7 prime has a linear relationship with 43 prime. 11 prime also has a linear relationship with 43 prime, left and 29 prime, 47 prime and 83 prime, right.

 1 2|P| 3|P| 4|P| 5\P\ 6 7\P\ 8 9 10 11\/P\/ 12 13\P\ 14 15 16 17|P| 18 19|P| 20 21 22 23\P\ 24 25 26 27 28 29\P\ 30 31|P| 32 33 34 35 36 37|P| 38 39 40 41|P| 42 43\P\ 44 45 46 47\P\ 48 49 50 51 52 53|P| 54 55 56 57 58 59|P| 60 61|P| 62 63 64 65 66 67|P| 68 69 70 71|P| 72 73|P| 74 75 76 77 78 79|P| 80 81 82 83\P\ 84 85 86 87 88 89|P| 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131|P| 132 133 134 135 136 137|P| 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359|P| 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374

The 18x20 (360) Grid

A Comparison of Fibonacci Numbers and Primes in a Table Format.
A Comparison of Fibonacci Numbers and Primes in a Table Format.

FIBONACCI SERIES

The fibonacci series is in Bold: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233 (12th)

PRIMES

The Primes: 1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89 (24th)

The Table has a 1-360 linear sequence.
The 1-18 is repeated upon a 18x20, reaching 18 per row.

Notice that there is a certain arrangement of the primes denoted as /P/ or \P\, depending upon whether the prime lines up at a 45 degree angle to the left, right or seems to be a center |P|. Some unique characteristics about this Table is that 4 prime has a linear relationship with 23 prime. 5 prime has a linear relationship with 43 prime. 13 prime has a linear relationship with 47 prime. 13 prime has a linear relationship with fibonacci 89.

 1 2|P| 3|P| 4\P\ 5\P\ 6 7|P| 8 9 10 11|P| 12 13/\P/\ 14 15 16 17/P/ 18 19|P| 20 21 22 23\P\ 24 25 26 27 28 29|P| 30 31|P| 32 33 34 35 36 37|P| 38 39 40 41|P| 42 43\P\ 44 45 46 47/P/ 48 49 50 51 52 53|P| 54 55 56 57 58 59|P| 60 61|P| 62 63 64 65 66 67|P| 68 69 70 71|P| 72 73|P| 74 75 76 77 78 79|P| 80 81 82 83|P| 84 85 86 87 88 89|P| 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131|/P|/ 132 133 134 135 136 137|P| 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 221 222 223 224 225 226 227 228 229 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359|P| 360

The 19x19 (361) Grid

A Comparison of Fibonacci Numbers and Primes in a Table Format.
A Comparison of Fibonacci Numbers and Primes in a Table Format.

FIBONACCI SERIES

The fibonacci series is in Bold: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233 (12th)

PRIMES

The Primes: 1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89 (24th)

The Table has a 1-361 linear sequence.
The 1-15 is repeated upon a 19x19 grid for the purpose of adding 5 extra notes (a 5th) to the 15 note series, reaching 19 per row.

Notice that there is a certain arrangement of the primes denoted as /P/ or \P\, depending upon whether the prime lines up at a 45 degree angle to the left, right or seems to be a center |P|. Some unique characteristics about this Table is that the center prime is at 7 and the left and right 45 degree angles begin at 3 prime and 11 prime.

There is also a linear relationship line between 11 prime and 137 prime.

131 prime and 359 prime are on the same vertical column as 17 prime. Is this what Mr. Henry was speaking about when he mentioned "square of 12 charts?"

 1 2|P| 3\P\ 4\P\ 5\P\ 6 7|P| 8 9 10 11/P/ 12 13\P\ 14 15 16 17/P/ 18 19|P| 20 21 22 23\P\ 24 25 26 27 28 29/P/ 30 31|P| 32 33 34 35 36 37|P| 38 39 40 41|P| 42 43\P\ 44 45 46 47/P/ 48 49 50 51 52 53|P| 54 55 56 57 58 59|P| 60 61|P| 62 63 64 65 66 67|P| 68 69 70 71|P| 72 73|P| 74 75 76 77 78 79|P| 80 81 82 83|P| 84 85 86 87 88 89|P| 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131|P| 132 133 134 135 136 137/P/ 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359|P| 360 361

Back to: 143 The Invisible Universe

Impossible Correspondence Index